
Efficient ICCG on a

Shared Memory Multiprocessor

Steven W. Hammond

Robert Schreiber

l/F-6)_j

May, 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.24

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188843) EFFICIENT ICCG ON A SHAREO

MEMORY MULTIPROCESSOR (Research Inst. for

Advanced Computer Science) 33 p CSCL 09B

N92-II693

Unclas
G3/62 0043029

Research Institute for Advanced Computer Science

\

\

Efficient ICCG on a

Shared Memory Multiprocessor

Steven W. Hammered

Robert Schreiber

May, 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.24

NASA Cooperative Agreement Number NCC 2-387

Efficient ICCG on a

Shared Memory Multiprocessor

Steven W. Hammond t Robert Schreiber _;

May 1989

Abstract

In this paper we discuss different approaches for exploiting parallelism in

the ICCG method for solving large sparse symmetric positive ,lefinite systems

of equations on a shared memory parallel computer. Techniques for efficiently

solving triangular systems and computing sparse matrix-vector prodm:ts are

explored. Three methods for scheduling the tasks in solving triangular systems

are implemented on the Sequent Balance 21000. Sample problems that are row

resentative of a large class of problems solved using iterat ive met hods are used.
We show that a static analysis to determine data depen,t_mces in the triangular.

solve can greatly improve its parallel efficiency. We also show that ignoring

symmetry and storing the whole matrix can reduce solution time substantially.

"submitted to: International Journal of High Speed Computing.
tPh.D. Student at Rensselaer Polytechnic Institute, Troy, NY 12180 and Visiting Research

Associate at Research Institute for Advanced Computer Science, NASA Ames Research Center.
Moffett Field, CA 940:35.

iResearch Institute for Advanced Computer Science, NASA Ames Research (?enter. Moffett
Field. CA 94035.

°Work reported herein was supported by Cooperative Agreement .N'('C'2-187 between the Na-
tional .\eronantics and Space Administration (NASA) and the Universities Space Research Asso-

ciation {USRA)..

1 Introduction

We explore differeut schemes for exploiting the parallelism availatble in the ICCG

method for solving large sparse systems of linear equations on a shared memory

computer. All of this work has been conducted on a 12 processor Sequent Bal-

ance 21000. We have looked at the efficient implementation of methods for solving

triangular systems and at sparse matrix vector multiplication.

A_I important clifficulty in solving general sparse triangular systems is that the

available parallelism depends on the zero structure of the matrix, and is therefore not

known at compile time. The concurrency is data dependent and can be determiI_ed

only at run lime. \Ve show that bv performing a small amount of analysis to

determine the data dependences one can drastically improve the parallel efficiency.

We permute (reorder) the index set of the recurrence equation for the triangular

solve and put the indices in a queue. The processors repeatedly take indices from

tile queue, perform the associated calculations, and theu take another index until all

unknowns have been computed. Data dependen.ces are resolved by semaphore.s..\

s_naphore is a variable that can be operated upon only by synchronizing primitives.

We chock indices in a shared array that indicate whether each of the unknowns has

been computrd. If a calculation depends on a piece of data and an entry in the

shared array indicates that it has not boen computed then the processor performing

the calculation must bu.sy trait. Busy waiting is when a processor loops waiting for

a flag to change value.

Also, we show that there is a tradeoff between storing the lower triangular part

of a symmetric matrix and storiltg the entire matrix. Storing the lower part to save

storage complicates the multipliclition since both outer products (which require syn-

chronization) and inner products must be performed. The synchronization overhead

slows down this operation.

For our experiments we work with system.s of equations in the form they are

presented. We do not consider the problem of reordering tile rows and columns to

enhance parallelism.

The rest of this paper is organized as follows. Section 2 reviews related research.

Section 3 contains a brief discussion of the ICCG method. Section 4 discusses how

the dependence graph is used to exploit the parallelism in solving sparse triangular

systems. Section 5 contains numerical experiments that _how it is more efficient to

store the whole symmetric matrix than only the upper or lower triangular part. In

Section 6 we compare solving a lower triangular system by inm_r products versus

solving by outer products. Section 7 presents the efficiency of the [CCG method

using the techniques described in the previous sections. Section _q dicusses other

scheduling methods not used in this paper. Section 9 contains remarks and conclu-

ORIGINAL PAGE IS
OF POOR QUALITY

sions. Appendix .k ,le>cribes the 7 I_,st cases us,'d ill lhe _':q)eriments. Appendix

B discusses the architecture of the S,,_luont Balance 21000 and provide_, time_, for

ari_hm_,Tic ,)perations and syuchrcmi×,li,n, primitiw,s. [i_ .\ppottdix (' we ._ltow how

tD, time to access array olentents increases as a t'uncti,m of Ill,, array size on th,,

Sequent Balance 2L000.

2 Related Work

Lev,,l _cheduling m,,_ho,ts ar_, c,msid,,r,,,I in ['2.12.2T]..\n,i,,rson [2] compares tw,,

different sc'heduliiig In,_tho(ls tbr _olving ._l)arse trianglllar _,vstems on the .\lliall_

FX/'_. at ._hared monl,wy machine. 'I'l,,y are jor,'ard h _', l _,'t, rl,lit*9, in whictt each

unknown in the triangular solve is cornl)ut(,(I as early a> possible, and baak_c.rd b c(l

.,chedvlb_g. in which ,.ach unknown is computed at the latest p(>sit)le time..k]_,v,*!

scheduling approach i)altitions the loop ,)f tim r(wurrmwe e(lua_icm into a se(luonc,'

,)f fully par;,llolizod d,) lo_p_ (levels) separ,tlod I)v _h)bal _vnchr_)nization_. tie shrew

vhal t he merh,,,l in scheduling tasks to t)e l)erformo,l as lal,, as l)Ossiblo is not worth

the time savings.

Baxter (t. ,tl. [3] compare lec_l ..oh, d,,lild/wit l, a ._ lf.,,'herhdi,_g method using :,

,harod nlernory computer, an Encore Xlultimax/:g20. The ._clJ'.,ch,:duling lnothod i-_

a two step procedure to parall,,lizo _h,, recurrence ,'qHalioti (ff the triangular solve.

Fir,.,t. one performs a topological sort of vhe d(,pon_lence graph f,, permute the index

loop. Next. static_dly assign dements of ihe iudex _et to the Processors of tit,,

system. Global synchrcmizations are avoi_le_l hy requiring processors to write into

specified locati_ms of shared arrays when work on a particular index is completed.

Bof(_re a variable can he u_ed. a processor makes sur,, {hal lhe appropriate value.;

have boon calculated by b,._!l It'aiting _,n "a desi-_,nat_,d vahle iu tim ,har,'d mentor',.

They show thal .s_/f .,,'h, dulm9 perf,_rms b,.,!ter than h col .schtrhd;,:l for all but one

()ftheir _est cases.

The work of 5alrz ,/. al. [25] i_ similar _o th,, x_ork _)f B,txt,'r. -[hey also compare

tez'_l ._,'h_dulingand .,, lj'.,'ch_d_li_gou :an Encore an_t rea,ch siulilar conclusions. Saltz

also proposes a um_ [)r(_ralnnfing con>! rmt. ,lob'on.eider v. hi('h allows compilers to

parallelize many prob[em._ in which sul)statltial l,)(,p-lovol paralleli.,m i> available h,tl

cann,), b,, dete('tc, d I)v ,_ andard compile-tim,, analysi.,.

Th,, ,liffi, renco be_',voen the _vcn'k t)rosenlo_l hero and i)r_,viaus work on lriang,!ar

'.,vstelIls iS lh,'ll we tl:-,o q]}-llatllic gche(lqlilt_ to ass]fill ta,>k:, to processors and [i_¢"

others lisp static sche, l,_li,,,.g-.

In this pap,,r we t'o_ u._ nn e;,,n,,ral paralhq l)r,,c,,-,._,r, hill ,,thers have studied

imph, mentathm._ ,m fmrall,'! vector machin,'.; [I 7,.I,;.2C).2t,]..\dditi,mallv..'5_'lad [:211

ORIGINAL PAGE IS
OF POOR QUALITY

pre:setiTs a survey of cecen_ research ill [(l"',[r_',," '..;Uh.-,p,wc, met bud,-; v.,'it[t :_n ,fmlpha,,i,,

on paralM and vector i t_pl,,nioitlati,ms.

3 ICCG Background

l[ore we give a brief intr()duclion t() the [nc'(mlt)lete ('holesky (',mj,,lgate _;radient

(I('CG) metb.,d. For _bqailed infl)rmation,ffits derivation and properties see rof-

erence.s [6. ll. L3.!T,l&2:l]. Fit,' ('(mjugato Gradient (('(;) m,qh(,,l was propo_,,d by

llc'_tene._ and .qt iofol 113! for the _oluti,m ,_l

I.,: = h. (l}

whore .l i_ a _, vr, n _ymul,,v tic p,,',ilive d,'finit,, .V by .V real rix. b i_ a given .\--vector

aim ,r is an .\-vector to t)e I7_lll[)lltOd.

Starting from an initial gu,,._s .r ('el, th,, ('(; method generates a series of approx-

imate _oluri_ms .r (¢'). Th. conw_rgonce ra_e is w, ry poor for ill-conditioned problems

[1 I]. One way to imprtw,, !he c,mvergr, nce i_ to pre_-conditio_, (1) - promultiply it

by a condit ioniug mat rix aml there!y:; condense the eigeltva[jo spec! rum [t].

.\ popular proc<mdilioner is tit,, hwomplete ('holesky precomiitioner propose,l

by Meijerink and Vau der Verst its]: They perform an approximate ('holesk.v-

factorization [.L vof.t wilh zero fill. Equation{i)now becomes,:

[(L-I)L-_.I]r =_L-rlL-lb. (2)

L -1 is not explicitly computed, inst_,ad triangular systems are solved. Each iteration

of the [CCG method requires the solution of two sparse triangular systems, a sparse

matrix vector pro,luct, 3 saxpy', and '2 inn_,r products.

We warn the reader _h}lt WO IISe ;-Ill inc(msistont notation [wre from the rest of

'he paper. [[,.re we sub'_(ril_t a vect,_r r,, inditer,, ,hat it is a nlelnber of a sequeuco

rather _han referrin,,_ to an. individual ,,lentor,_. Tile _,,'eek 1,4ters represent .,<Mars.

rhe [('('G moth_d is bale, w:

ro := 0

ro :=b
Jl. i

:= -lt,Ull,.

repeat For k= 1. '2....

Sohe [l, v :k- t = r,. _ i for :__

1" /. F:_k :-'_'-- -b_l-"k-I -,,_22,;:-2

P_,- := :,t-- i ÷ ¢_. Pa.- I

ORIGINAL PAGE IS
OF POOR QUALrTY

Z

.T rk_t/p_,4p kOk :_ "k-1

•rk := ,rk-I + _kPk

rk := rk-i -- _k.4Pk

until]]rk]]_ _<

:-" £k

For our codes we choose - = l0 -a so our iteration stops when the infinity norm

of the residual is reduced by 6 orders of magnitude.

4 Triangular Systems

At each ICCG iteration we solve the triangular systems

Lq = r (3)

and

LTz = q. (4)

Together, these two operations consume between 30_ and 41% of the total cpu time

required to solve the system on a single processor for our test cases. The percentage

depends on the sparsity of L - the more nonzero elements in L the higher the per-

centage. The remaining time is consumed by sparse matrix-vector products, inner

products and saxpy's. These are relatively easy to compute in parallel. Efficient

parallel computation of the triangular solves is necessary to accelerate the entire

computation.

The system (3) is solved by

r,- E;
q, = i = t V (.5)

Li,i

In tile (lense case, each q, depends on all qj, j = 1..... i - l. When L is sparse.

each q_ depends on a few other %. Another way to look at it is that once some qj

has been computed, several other q's may be computed in parallel. It is possible to

perform some simple analysis of the data dependences to determine which elements

of q can be computed in parallel and determine which q,'s each qi depends on. This

information can be utilized to schedule tasks. For example, if qi depends on qj thoa

rb should be scheduled before q_. Also, if q) and qk are independent tasks then we

may schedule them to be computed in parallol. "

ORIGINAL PAGE IS

OF POOR QUALrTY

X

x

x

X

x

X

x x

X X

X

X X x

X X x x

Figure [: Sparsity Structure of L

4.1 Computing the Dependence Graph

The problem one faces wheu exploiting this type of parallelism is that it is data

dependent and can only be recognized at run time, not at compile time. [t depends

entirely on the sparsity structure of L. L is usually read in as input or computed

at an earlier stage of the program. The focus in this section and the next one is

on lower triangular systems. A similar analysis can be done on upper triangular
mat rices.

Consider solving (3) where L has the sparsity structure shown in Figure 1.

Analysis of the structure of L enables us to construct a corresponding directed

graph (digraph), the dependenc_: grelph G(L) = (I_.E). There are N vertices,

V = {1 V}, corresponding to the X rows of L (and X elements of q). A

nonzero element at I,., means that q, depends on qa; i.e.. q5 must be calculated

before q,. Therefore. we define the edges of G(L) as follows: E = {(j, i) I li.s # 0}.

We ignore the loops corresponding to the diagonal elements of L (G([,) is acyclic).

The depth of a vertex _'i is 0 if it has no predecessors otherwise the &pth of t,i is the

length of the longest directed path in G(L) whose origin is a vertex of depth 0 and

terminus is u,.

The d_,pendence graph of L is shown in Figure 2. All nodes at depth 0 can

be compnte,t immediately. They have no dependences, ql and qa can be solved

directly'. Once q:3 is computed we can sohe for q4. After ql is computed we can solve

for q2 _ rt,_ in parallel. The unknowns q2 and q6 depend only on ql. Once q2. q6

and q4 have be_'n computed, we can solve for q_, qr in parallel. Vertices that have

@ual depth represent indepeiii]ent {asks. The fact- that q2 and q6 can be computed

as soon as qt has been computed, even if el3 has not b_en completed, illustrates

the difference between le,'¢l ._rheduling methods and self ._,'hed_dil_g methods, let'el

O a NAL
OF POOR QUALITY

Figure 2: Dependence Graph of L

scheduling computes tasks corresponding to vertices of equal depth in G in parallel.

All tasks at a certain depth must be completed before tasks at the next level cart be

started. Global synchronizations are used to separate tasks at differoltt depths, self

scheduling allows tasks to start as soon as their associated dependences have been

computed.

4.2 Permuting the Index Set

The index set for the sequential solution of equation (5)is i = 1..... N. To exploit

the parallelism in the forward solve we reorder the index set according to the depth

of each index in the dependence graph. A ver_,,x of a certain depth is put in the

permuted set before all vertices of greater depth. We define po.stion(k) to be the

number of elements in the premuted index set that precede k. If two vertices vi and

t'_ have equal depth then we put t'i in tile permuted index set before r,j if

max(position(n))< max(position(m)) such that(n,i),(m,j) E E.
r_ rtl

[f

max(position(_.)) = max(po.sition(m)) such that (n,i).(m.j) E E

then n = m and vi is placed iu the list before t,j if i < j. This is a side effect ¢Jf the
sequential traversa[of the data structure for L.

ORIGINAL PAGE tS

OF POOR QUALITY

We call this permuted index set fwd_schedule. For example, the permuted

index set, [rom tile dependence graph in Figure 2 is

fwd_schedule = {[, 3. 2, 6, 4, 5, 7, 8}

Note that 6 appears before 4. 6 is a descendent of 1 and 4 is a descendent of 3 and

position([) < po.sition(3).

One way to compute the fwd_schedule list is outlined here. First, as the matrix

is assembled or road in, construct an array of length N. called the r_:ndy array such

that read q[i] is the number of nonzero elements in row i of L. We then scan the

entries ,ff the ready array looking [or entries with a value of l. If ready(i) = 1 then qi

('art be solv-,l for directly. This entry is put in a queue, Q. When we have inserted

all entries ,.vilh value 1 in Q we start the following loop. We follow the notation

used in Ill for operations on a queue. A queue is a special kind of a list. where items

are inserted at one on I (the rear) and deleted from the other end (the front).

fwd_schedule = nil

While ((mpty(O) # true)

t. i := fro,_l(Q)

2. ,hque,tei (2)

3. append i to fwd_schedule list

4. for each nonzero element Lki

(a) r_.ad.q(kt := ready(k)- 1

(b) if (read_l(k) = l) then enqueue(Q, k)

The dependence graph is not explicitly computed but the information it repre-

sents is implicit in ready and the ordering of fwd_-qchedule. \Ve require two integer

arrays of length 5 to hold fwd_schedule and ready. This additional storage is small

relative to the storage for A. L and the other N-vectors needed for ICCG.

Equation (4) is also solved with a permuted index set. which we store in the array

back_schedule []. [t is computed by analyzing the dependence graph of LT, (7(Lr).

in a manner similar to that used to compute fwd_schedule. Let G(L r) = (Vr. ET),

I_r = I" and Er = {(j,_)I(i.j) 6 E}. C;(L r) is the same as G(L) with the direction

of the edges rovers,_d. For the example shown in Figure 1. the schedules for solving

the ,lpper and lower triangular systems are the reverse of each other. This is not

true in general. Suppose that we have the same lower triangular matrix as in Figure

1 exceW L_.l and Ls,8 are th,_ only nonzero elements in row "_of L. Then. cs will

ORIG!NAL PAGE IS

OF POOR QUALITY

case

I. .12
2 .06

3 .05

4 .07

5 .10

6 .25

7 3.12

fwd_schedule fwd solve back__chedule bck solve .\x=b
r,

.18

.06

.05

.08

.11

.30

3.25

.11

.05

.04

.06

.09

.23

2.09

.16

.06

.04

.08

.10

.28

2.1_8

1.89

2.45

3.07

3.2[

8.85

8.52

655.39

Table 1: Time in seconds to compute task schedules vs. single sequential triangular

sohe and solving Ax=b in parallel

be depth 1 in G(L) and 8 will be the 6 th element in fwd_schedule[]. But, cs will

be at depth 0 in G(L r) and the first element in back_scheduleE].

The time to compute the permuted index sets is a little le._s than the time to

compute a single sequential triangular solve and a small fraction of the time to

solve (2) in parallel. The time in seconds to compute the forward and backward

schedules for the test cases is shown in Table 1. We compare the time to compute the

fwd_schedule and the back_schedule lists with the time to sequentially compute

one forward and backward solve and with the time to solve Ax = b in parallel.

4.3 Forward Solve

We solve (3) as follows. L is stored by columns and the forward solve is computed

as a set of outer products, fwd_schedule is the list of indices which correspond to

elements ofq to be computed. It is treated as a queue of tasks to be executed by

the pool of processors. Let there by P processors. Initially, the first P indices in

the queue are assigned one to each processor. Let i be the index a processor gets

from the queue. Before we compute each 5_rward solve we set fwd..ready E] 1o be

the number of nonzero elements in each row of L. If fwd._ready[i] # 1, then the

processor must busy wait, else, compute ri = b,/Li.,. Next, compute rj- = Lj.iq_

and decrement fwd._readyEj] for all nonzero elements j of column i of L. Finally,

if the queue is not empty get the next task.

For the triangular solve, we experimentally compared three different techniques

for parallelizing the code. We call the first method dynamic sche&Jing (DS). The

elements of q are assigned to processors in order, from t to ,\'. They are computed

as soon as the data they depend on is ready to be used. The data illustrate that

9

O_|GINAL PAGE IS

OF" POOR QUALI.T'y

poor perfl_rmance may he expected if the index set is left in its original order.

The second technique is clue to Baxter et. al. [3]. We call this technique

reoMEred _tatic scheduling (RSS). They use the reordering strategy above, but em-

ploy a static assignmen.t of tasks from the permuted index set to processors. Let

P be the number of processors. Processor i, 1 _< i _< P, gets tasks i + P x j for

j = 0 , L_]. it has the advantage that for every iteration each processor

will solve for the same values of q. This characteristic is especially noticeable for

small problems when theentire problem fits ill the local memory (or cache) of the

processors. But this may not be very good at load balancing, if there are wide

variations in the number of nonzero elements in the rows/columns of the matrix

then the static mapping may cause unnecessary busy waiting. This variation arises

in many differeut si_ _tations: non-uniform discretizations, adaptively refin_,d meshes,

or mixed olemet_t types (triangular and quadrilateral elements in the same grid) for

instance.

The problem with rt_ort#:red .static sr'heduling is that the position of the task in

the schedule is determined solely by its d,pth in the dependence graph. The strategy

does not consider the alnount of time needed to perform tile task. it is possible that

a static assignment of tasks to processors could result in uneven distribution of work

and lower or less throughput.

The third technique is called reordered d!tnarnie .s_'heduting (RDS). We reorder

the index set as above, but we put the indices (tasks) in a queue rather than stati-

cally mapping them to processors. The first processor done with the work initially

assigned to it takes the next job from the front of the queue. This is done to reduce

the time spent btl._y u,aiting due to potential load imbalance. There is an addi-

tional expense of maintaining a global pointer (re_next() on the Sequent) to the

first element in the queue.

The C code for reodered dynamic scheduling is shown in Figure 3. m_.next() is

the system function which increments a _obal counter and returns its current value.

fud_schedul.e[] is our permuted index set for the forward soh'e..ks suggested by

Duff, et. _tl. [7], we store the columns as packed sparse vectors held contiguously

in the array 1.[]. The row numbers of tile corresponding nonzero entries held in

1.[] are held in the integer array row_hUm[]. Tile integer array start[i] points

to the start of column i in array 1,[] containing tile nonzero elements of matrix L.

In fact 1-[.qtazt[i]] is the cliagonal element Li.i. Tile global variables unknowns

and col..nonzero hold the number of rows in L and the total nonzero elempnts in

L respectively start[unknowns+i] -- tot_nonzero + i.

Once we have gotten a task from the queu% we check whether all of the data

it needs are ready. This is done b,v looking at the va[ue of the fwd_ready[i] array

containlilg tile number of direct d0p,mdences for row i. if tile value is greater than

10

parallel_fwdslv(l, q, row_hUm, my_id, num_proc)

double

I[], q[];

short int

row_num [] ;

int

my_id, num_proc ;

{

register double

trap;

register int

column, row, pointer;

int

task, m_nextO;

/* i[] - nonzero elements of L */

/* q[] vector to be computed */

/* row_num[i] - row of element i ,/

/* proc's id and # of proc's */

task -- re_next(); /* get pointer into queue */

while (task <= unknowns) {

column = fwd_schedule[task];

bck_ready[column] = WAIT;

pointer = start[column];

while (fwd_ready[column] > i) continue;

q[eolumn] /= l[pointer++];

tmp = q[column];

/* get column for this task */

/* reset for back solve */

/* get pointer into DS */

/* busy wait u_til ready */

/* solve for our q[i] */

/* store it in a local var */

while (pointer < start[column+l]) {

row = row_num [pointer] ;

S_LOCK (Ip [row]) ;

q[row] -= l[pointer] * trap;

f wd_ready [row] -- ;

S_UNLUCK (Ip [row]) ;

pointer++ ;

}

task = re_next();

}

m_sync();
}

/* set lock */

/* mult q[i] by column j */

/* decrement depend, vector */

/* unlock lock */

/* move to next nonzero element */

/* get next task */

/* synchronize before returning */

Figure .1: Procedure for Parallel For_vard Solve

[[

Case Sequent ial

t_

1 2.97

2 2.S0

3 3.29

•I 3A4

5 tl.32

6 t3.29

7 665.21

DS

tp e ffic.

1.6[.t5

.78 .30

1.07 .26

1.54 .2l

3.48 .27

11.6t .10

,t 1,_.21 .[3

Type

RSS RDS

tp effic, tT_ effic.

•73 .34

.55 .12

,72 .38

.90 .36

'2.13 .4 t

2.73 .41

219.46 .25

.7_ .32

•77 .30

.99 .2S

1.03 .31

2.92 .32

3.29 .34

206.81 .27

Table '2: "[imo in seconds :tud ,,fficiency of parallel forward soh'e olt 12 processors

relative to seqnential (ode

I. then we bu.sy wait. When fwd_ready[i] is equal to 1 the dependences for qi havo

been ,atisfied and we can compule qi. We set qi = q,/L,.i and then loop over the

nonzero elmnents in column i below the diagonal, computing qa TM qa - L)., x q,. Then

we decrement the value of the fwd_ready[j] array to indicate that one depondonce

{'or q: has been _ali.,fied. The array q and the, fwd_ready array are shared and

access to individual dements must be synchronized using the system calls S_LOCK()

and S_UNL0CK(). These synchronization procedures are called once {'or each nonzero

off-diagonal dement in the h-,wer triangular matrix each iteration. This locking and

unlocking operation takes about half of the time [n the forward solve routine when

the matrix is stored 1)y columns. We also reset bck...ready[] for the uext back >olve

operation.

In Table 2 we show the results for the three methods explained above on sevon

test problems. This is the time spent during the iterative solution of .l,r = b doing

forward solves. All thnes are measured in seconds. We also include the sequential

time for {'or each problem, t,. The sequential time given is the best sequential

code we could write running on one processor; there are no parallel constructs or

synchronizations used. Parallel code running on 12 processors of the Sequent took

time t:,. \Ve measure e_ciency as

t.s

elfic.- , #proc = t2.
1f, x #proc

The DS timings aro includod for comparison to illustrate the benefit of computing

the depondence graph and permuting the index set. We see that both RSS and

12

C ase

1 0.05

2 0.22

3 0.29

4 0.13

5 0.79

6 0.44

tRDS - (RSS Predicted # iterations

0.06

O.ll

0.14

0.13

0.47

0.44

16

41

68

t5

101

43

Table 3: Time Difference between RDS and RSS vs. Estimated time in seconds

RDS are significantly better than DS, sometimes more than twice as efficient. The

RSS method performs better than RDS in all but the last problem. In the first

Test Case, RSS and RDS the two took almost the same time, and half as long as

dynamic scheduling. In the last case, RDS was more efficient than RSS despite

the calls to the Nobal counter. This has several possible explanalicms. First, the
number of nonzero elements in each column was more in the first and last cases

than in the second through sixth cases. Thus. the relative overhead associated with

the global counter versus the amount of work to do per call is less. In the last case,

the number of nonzero elements per column varied between _ and t0. Good load

balancing is especially important in this case for increased throughput. Statically

assigning tasks to processors by their depth in the dependence fraph alone (as in

RSS) cannot achieve this. There must be some way to account for the amount

of work to be done in each task, not just the dependences of the task. The RDS

method performs better at this than the RSS method as shown in Test Case 7.

When the problems have a regular sparsity structure (most of the columns/rows

have the same number of aonzero elements) the time to compute each q, is roughly

the same and the load is balanced as long as each processor gets roughly the same

number of qi's to solve for. Test Cases l-6 have a regular sparsity structure and thus

the RSS method performed slightly better. The main contribution to this difference

is the fact that in the RDS technique a global counter is used to maintain the queue

of tasks. [t takes about 50_l-seconds for each call and this is done before each q_

is computed. A prediction for the time difference when there is a reg,flar sparsity
structure is

(#unknowns'_
tRDs-tRss _(50#-seconds)(#iterations)\ _ /. (6)

In Table 3 we compare the actual difference with th, _ prediction for the first 6 cases.

The right most column shows the number of iterations for convergence for each test

13

case.This modelgivesan estimate of the size of the difference that is correct to

within a factor of t_vo.

4.4 Backward Solve

The backward solve is similar to the forward solve, but there are subtle differences

in implementation. To solve (4) we carry out the computation as a series of inner

prodm:ts rather than outer products. L r is accessed by rows since we store L by
CO[tlIIlltS.

An outline of our back solve procedure follows..Iust as in the forward solve,

we have a list of perm,tted indices back_schedule[]. [t is computed in a manner

analogo,ls t_, fwd_schedule []. back_schedule [] is treated as a queue of tasks to be

computed by the pr,,cessors, bck_ready[] is initialized to the value ''WAIT' '. For

some j, ifbck_.readyfj] = WAIT then this indicates that z[j] has not been computed

w,t. Each processor gets an index fl'om the queue as it begins the back solve. Let

i be the index that _ome processor gets. For each nonzero element j in row i of

Lr. check bck_ready[j]. [f bck_.raady[j] = WAIT, then busy wait. Else. compute

z[i]- = LTjz[j]. When all nonzero off-diagnoa[elements in row i have been used

we calcdaro z[i] = z[iJ/LT.i and set bck_ready[i] = 'CDONE" The value DONE

indicates tha_ the-lement ofz['l is computed. Finally, if the queue is not empty

get the next index.

The C code for this tech,ique is shown in Figure L As in the forward solve

routine we compqte the new vector in place, overwriting the previous entries of

z[]. l[] is the array containing the nonzero elements of the rows of the upper

triangular matrix. The beginning of row i is pointed to by the array start[iJ. To

move across the nonzero elements of row i, from right to left, we start a_ pointer =

start[i+l]-l, start[i+1] points to ,/-i+1,i+1 in l[] and start [i+l] -I points to

the right-most nonzero element in row i. The bck...ready[] array is set to "'BUSY"

during the previous fi_rward solve, Therofore. if bck_.ready [j] = BUSY. then z[j]

has not been computed yet in the back solve. To reset fwd_ready[j] for the next

forward solve we set fwd_ready[j] = fwd_dopend[jl, fwd_depend[j] is the num-

ber of nonz_'ro elements in row j of L. To indicate that z[j] has been computed in

the back solve we set bck_.ready [j] to "DONE". The back_schedule [] array contains

the index set that has been pernmled appropriately for the back solve operation.

Finally, we _et a harrier re_synch() _o synchronize a!l processors at the end of the

procedure before returning.

There is no aoed to do the ion:king and unlocking as in the forward solve routine.

This procedure only write_ to three -hated arrays fwd_ready[], bck_ready[], and

z[]. Each locaTi_m i_ road by many proces,ors but only written to by one processor.

iI

parallel_bckslv(l, z, row_hUm, my_id, num_proc)

double

i[], z[];

short int

row_num [] ;

int

my_id, num_proc;

{

register double

tmp ;

register int

row, column, pointer;

int

task, re_next();

/* arrays for L and z */

/* row_num[i] is row of element l[i] */

/* variables for processor # and # of processors */

task = re_next(); " /* get first task to do */

while (task <ffiunknowns) {

row = back_achedule[task];

pointer ffistart[row+l] - i;

column = row_num[pointer] ;

trap = z[row]; /* copy z to local register variable */

while (column > row) {

while (bck_ready[column] ffi= SPIN) continue;/* busy wait until ready */

trap -- l[pointer] * z[column];

column = row_num[--pointer] ;

}

z[row] = trap / l[pointer];

bck_ready[row] = DONE;

fwd_ready[row] ffifwd_depend[row];

task ffim_next();

}

m_sync();
}

/* get next column number */

/* set flag that it is done */

/* reset for next forward solve */

/* get next one to do */

/* get all proc's synched before returning */

Figure I: Procedure for Parallel Ba(:kwaM _(Jlvo

15

Case
Method

Sequential DS RSS RDS
t _ tc effic, tp oflqc, tp effic.

2.70

2.65

3.07

3.56

10.75

12.3S

507.90

.95 .21

.67 .33

.,q3 .31

t.O1 .29

2.63 ,34

7.18 .14

103.92 . tl

.:l,q .5,_

• 12 .53

. t9 .52

•55 ..54

1.54 ..58

1.72 .60

85.14 .50

• 15 .50

.62 .36

.78 .33

.81 .37

2.56 .35

2.35 .14

85.80 .i9

Table l: Time in seconds and efficiency of parallel backward solve on 12 processors

relative to sequential code

No locking is required in this situation. The inner product form of tile triangular
solve therefore has much less ovorh_,ad.

In Table I we compare the three methods for the backward solve. DS is clearly

slower than the other two. It is only included for comparison. We see that the

RSS method performs better than the other methods. Just as for the forward solve,

the time difference is due to the fact that in RDS a global counter is required to

maintain the queue' of tasks. The difference is very" pronounced for problems 1-6:

since there is very little work to do to compute each z;; i.e., there are only a few

nonzero off,liagonal elements in each row/column. The efficiency of RSS and RDS

are almost identical for Te._t Case 7. 1'he load balancing that is provided in RDS

makes up for the overhead of using the global counter. The amount of work to be

done to compute some zi is directly related to the number of lmnzeros in row i of

L. The amount of work per task affects the load balancing. Test Case 7 has the

most variation in the number of nonzero elements in its rows (and columns)• .ks the

variati_u increases so does the need to account for this in the scheduling of tasks.

5 Matrix-Vector Product

In this section we ,liscuss the implementation of sparse matrix-vector products {m

the Sequent. '__ show that it is more efficient to store the who[e _ymmetric matrix

by rows rather than ILying to save.,,torage and storing only the lower or upper

triangular half. Fhis is Iru_' for both the sparse matrix-vector product and the

L6

triangular solves. To compute a general symmetric sparse matrix-vector product

.4,r = b on tile Sequent it is more efficient to store all of .t by rows than to store

only the lower triangular part by rows (or columns).

When a sparse symmetric matrix is stored as a lower triangular matrix by

cotumns or rows (or if the upper triangular matrix is stored by columns or rows)

the multiplication must be carried by a combination of inner and outer products.

The implementation becomes complicated and requires synchronization to protect

elements of shared arrays from being modified by more than one processor at a tinle.

An implementation of a symmetric sparse matrix-vector product written in C

is shown in Figure 5. For this example, only the nonzero elements of lhe lower

triangular part of .4 are stored (by columns). First, each processor initializes a

portion of the array b[] to be zero. Next, each processor gets a column of the

data structure. This is a column of the lower triangular part of the matrix and

a row of the upper triangular part. A column in the lower part, say column i,

is multiplied by element x[i]. The product is accumulated into the ._hared array

hi'l: b[j]+=a[pointer] xx[i]. To be sure that only one processor is writing to

b[j] at a time we must use the system synchronization routines S_L0CK() and

S_UNLOCK(). Next we multiply the element of column i by x[j] and add the prod,lct

to the local variable inner_prod. When we have exhausted all elements of the upper

triangular row, we add the local inner product into the shared array b[] using the

appropriate locks. In essence, we accumulate inner products locaUy and add outer

products globally. This approach requires two system synchronization calls per

nonzero element in the lower triangular part of .t. Even though the probability of

collision is small since we are dealing with a sparse matrix, lhis ha_ to be done to

insure that only one processor updates an element of hi].

A procedure for computing a general sparse matrix-vector product where the

full A is stored by rows is much simpler and is shown in Figure 6. Each processor

computes a set of inner products. The processors dynamically get an element of b []

to compute using the system global counter m_next() The array row_start [] is an

array holding the starting point for each row as it is stored in the data structure.

The inner product of each row with z is computed and stored in b[]. This algorithm

requires no synchronization since the work is divided into non-overlapping groups
of rows.

in Table 5 we compare two methods for parallel computation of the sparse ma-

trix vector product with the time it takes to compute it sequentially. The first

method, "Symmetric", is the symmetric code from Figure .',. l_ takes advantage

of symmetry and stores only the lower triangular part of_he matrix. The second

method, _'Nosynch", is the same algorithm but we have commented out all of the

synchronization calls to S_LOCK() and S_UNLOCK(). The answer we get is incorr_ct

1.7

mult(a, x, b, row_num, first, last, my_id, num_proc)

double

a[], x[], b[];

short int

row_num[];

int

first, last, my_id, num_proc;

{

double

x_elem, inner_prod;

register int

pointer, k;

int

row, column, m_next();

for (k-first; k<last; k++) b[k] = 0.0; /* zero array */

m_sync () ;

column = re_next () ;

pointer = start[column];

/* get our Ist column to start on ,/

/* get position of Ist element _/

while (column <= unknowns) {

x_elem = x[column];

inner_prod = a[pointer++] * x_elem; /* compute a[i,i]*x[i] */

while (pointer < start[column+l]) {

row = row_num[pointer];

S_LOCK(Ip[row]);

b[row] += a[pointer] * x_elem; /, this is part of the outer prod. ,/

S UNLOCK(Ip[row]);

inner_prod += a[pointer++]*x[row];/_ this is part of the inner prod. */

}

S_LOCK(ip[column]);

b[column] += inner_prod; /* store the inner product now */

S_UNLOCK(ip[column])_

column = m_next(); /* get next column to work on */

pointer : start[column]; /* get pointer into array

}

m_sync(); /* wait until everyone else is done ,/

}

,/

Figure 7,: Code for Synml,,1 tic SI)aF_, _ ._Iat[ix-V,_clor Product

full_mult(a, x, b, col_num, first, last)

double

a[],

x [3,
" b[] ;
short int

col_num [] ;

int

f irst,

last ;

{

double

inner_prod;

register int

point er,

row,

column;

/* the nonzero entries of A */

/* the vector to mult by */

/* the result gets put here */

/* array of column numbers */

/* first row we work on */

/* we do up to by not including this row */

/* pointer into global DS */

/* row that we are working on */

/* column number in row that we are using */

*/

row = I;

while(row <- unknowns) {

row = m_next(); /* get row to work on */

inner_prod = 0.0;

compute a[row,*] * x[*] { inner product}

for (pointer = row_start[row]; pointer<row_start[row+l]; pointer++){

inner_prod += a[pointer] * x[col_num[pointer]];

}

b [row] = inner_prod;

}

m_sy_c () ;

}

Figure 6: Code for Full sparse matrix-vector product

[9

C;>e Sequential

t 5.86

2 5.29

3 6.03

[7.23

5 21.20

(_ I3.29

7 1270.x0

Symmetric

Method

Nosynch Full

t, t/, _,ffic. tp _'ffic. tp e_c.
.,.7.91 .5t

.99 . t5

[.06 .47

[.35 .45

3.6.l , [9

3.,q2 .56

321.'_5 .33

.58 .S-I

.59 .75

.71 .71

.77 .78

2.tl .73

2.35 .91

226.13 .17

.56

.63 .7O

.66 ,76

•76 .79

2.27 .7"_

2.55 .84

207. t6 .51

table .5: Time in seco,M_ and efficieucy ()f parallel Sparse Matrix-Vector product on

l"2 processor, r,,lative to se(lum/tial (()do

but we stop after the same number of iterations. This is to show the impact of

the synchronization. It also gives us a lower bound on the time for this method

of matrix-x>ctor product. The last method, "'Full". is the limes from the code in

Figure 6.

We see that storing the full matrix is best. Tinting and et_ciency is better

than 70¢7 exc_'pt for large problems. We expect this. since matrix-vector products

are very parallel computations. If we look at the difference between the parallel

times of the Symmetric and Nosynch columns it is clear that to use the system

synchronization calls adds almost 50e/c to the cost of the computation. But, even

wi*hout lhe synchronization, we see that the Full method is better than the Nosvnch

method. Fr-m tills we conclude 1hat there is no advantage ill storing only half of a

s.vmnwl ric mat t'ix for parallel computation of the _parse mat rix-vector product on

this machine.

.\n alternative)() _parso matrix voclor multiplication computed as inner or outer

pr(,ducls i._ propo_,ed my Melhom [19] where he suggests a general technique of using

striped matrix ,torage.

6 Triangular Solve Revisited

rite decision to _loro the full ma_ rix .I affects ot her parts of the code. We also stored

the full preconditioner as two triangular matrices. /_ and t r, both by rows. The new

va.hws f()r)he wimin_s of the triangular solves are comparo(l with the old values in

2O

Problem
[et hod

Symmetric Full
fwd bck fwd bck

.73 .38

.55 .42

.72 .49

.90 ""• O0

2.13 [.5t

2.73 [.72

206.8I "3_5.80

.44 .12

.41 .-12

.53 . tg

.60 .58

1.58 /.5 1

i .79 I..70

200.52 216.63

Table 6: Time in seconds for Triangular Solve on t2 processors

Table 6. The columns labeled "Symmetric" are for storing only the lower triangular

half of the symmetric matrix. The columns under "Full'" are the timings for storing

both the upper and lower triangular matrices of the preconditioner by row_. The

forward solve is faster because it uses inner products. There it no aynchronization

for every element of L, only one t'or each row. We cannot, however, explain the data
from Case 7.

7 Parallel Efficiency of ICCG

In Table 7 we show the time required to solve (1) for each implementation, assuming

the preconditioner has be previously computed. In the first six cas_,s it is ('lear that

storing the full matrix is better titan storing only its lower triangb,. The efficiency

is near or above 60% for the entire code. This is a very reasonable level and what

we expected. But, for the seventh case, the code was not efficient. In Appendix C

we show how the time to access array elements increases as a function of tit,, array
size and discuss the time for Test Case 7.

8 Scheduling

Other sclm(tuling methods not considered h_,ro at-discussed in [9.10.11.22]. The

general problem is to schedule a set of partially ordered tasks onto a m,tltiprocessor

system so that the time required to complete t lw tasks is miminized. This problem is

known to belong to the class of "strong" NP-hard problems. The work by [9,10.22]

2t

Case

Method

Sequential Symmvt tic Nosynch

i L5.26

2 17.,_0

3 2 [.00

4 22.52

5 72.39

6 78.09

7 2._Ll.[I

tp e t_('.

2.5,[.50

2.97 .50

3.,b9 ..15

•t.16 . t5

[0.a3 .56

1 [.01 .59

655.:39 .216

t p e t:_l C .

2.2,q .55

2.67 .55

3.18 .50

3.4:1 .54

9.58 .62

9.64 .67

609.36 .38

l.g9 .67

2.45 .60

3.07 .57

3.21 .5>

8.g5 .68

8.52 .76

660.19 .35

Table 7: Time in se(:on(ls and _,ffi('ie icy of Total [('('G code on 12 processors relative

tt.) :<oquentia[cod,,

prosent_ bounds on the number of processors required to compute the tasks in a

minimum amount of time and bounds the time to compute the tasks with a fixed

n1lnlber of processors. Also. in ii.0], bounds on the ratio of times for two different

feasible schedules are given.

Kasahara and Xarita [1 _] present two different scheduling methods. ('P/MISF

and DF/II-[S. ('P/._IISF stands for critical path/most immediate successor._ tir_t

and DF/IH.q ,tands for deplh first/implicit heuristic search. The primary difforence

between the two is that the former schedules tasks as soon as possible and the latter

schedu!es tasks as late as possible. Both require sorting of tasks at the same level

according to the number of predessors they have and both are O(N') algorithms.

where .V is the numb_'r of vertices in the dependence graph.

We do not use either of those s,'heduling techniques. Sorting the tasks at each

level is expensive. We choose a scheduling method that is not optima[but requires

very low ow, l'head.

9 Summary

We have discuss,,d difforen_ approaches tbr exploiting parallelism in the [CCG method

for solving large sparse syntmot tic positiw_ definite _y_tem_ of equations on a shared

memory parallel computer. W, showed that performing a small amount of analysis

to determine the data dopend,,ncos can drastically improve the parallel emcioncy.

Additionally, whm_ Iho sparsity structure of a triangular matrix was regular th_,n

22

a reordered static scheduling method porfl)rrned more efficieally than a reordered

dynamic scheduling method. Finally, we ._howod that for the Soqu('nt it was more

efficient to store the whole symmetric matrix by rows rather than only the upper

or lower triangular part. The code for a full matrix was simpler alad required less

synch ronization overhead.

References

[1] A..\he, J. Hopcroft. and J. Ullman. Data .S'tructures and Algorithm._. Addison-

Wesley, 1983.

[2] E. Anderson. Parallel Implementation of Precor_ditione,t Conj_lgate Gradient

Methods for Soh, iag Sparse Systems of Linear Systems. Technical Report 805,

Center for Supercomputing Research and Development. University of Illinois

at Urbana-Champaign, Urbana, Illinois, August t98g.

[3] D. Baxter..l. Saltz, M. Shultz, and S. Eisenstat. Preconditioned Kryloc Selects

and .ffethods for Ruatime Loop Parallelization. Technical Report TR-655, De-

partment of Computer Science, Yale University, New Haven ("F, October 1988.

[4] G. Bedrosian. FORTRAN Subroutine Package for Sob'ing Large. Sparse, .gym-

metric Linear Systems. Technical Report 84CRD284, General Etectric Co..

Corporate Research and Development Center, t984.

[a]

[61

G. Bedrosian. Private communication. [986.

P. Concus, G. H. Golub, altd D. P. O'Leary. A generalized conjugate gra,tieut

method for the numerical solution of elliptic partial differential equations. [n

Gene H. Golub, editor, Studies in Numerical Analysis. pages t79-198. The

Mathematical Association of America, 1994.

[7] I. S. Duff, A..X[. Erisman, and J. K. Reid. Direct 2Iethods for .Sparse .lbttrice.s.

Clarendon Press. Oxford, 1986.

[8] [. S. Duff. R. G. Grimes, and J. G. Lewis. 5par._e ._b_triz P,'oblems. Technical

Report CSS 191. Harwell Laboratory, October t987.

[9] E. B. Fernandez and B. Bussell. Bounds on the number of processors and time

for multiprocessor optimal schedules. IEEE Trans. ('on_ptll., c-22(S):745-751,

Aug t973.

23

[10] M. R. Garey and R. L. (-;raha,n. Bounds for multiprocessor scheduling with

resource corns1 taints..SZ4.ll .L (','m_put.. t(2): 1_7 200. [!)7.5.

[ll] G. [[. Golub and (". F. VauLoau..Uatria" C'omputations. Johns Hopkins ['ni-

versity Press. Ba].timore. Maryland, 19,q3. Second Priuting.

[12] _\. Grom_baum. ,5"oh'in9 l-riang,dar Linear 5'ystem._ U.*in9 FORTR.t_V _cith Par-

dtel Ezlen._ion._ on th_ .\}U ('ltracomp_lter Pr, tot,ype. Technical Report 99.

(-'ourant ln,_til ute. Xew York ['niver_ity, New York. NY. 19'_7.

[1._] X[. R. tle_tenos and E. StieM..X.[et hods of conjugate gradients for solving linear

systems..I. Re Vat/,md B,lr_a_ of Standards, (1_9):409--436. 1952.

[l,l] f1. Kasahara and Yarita S. Practical multiprocessor scheduling algorithms for

efficient para[lel processing. IEEE Tran.< F'omput., c-33(11):1023-1029, Nov

19St.

[1.5] A. Konigos. P, ralhl Pcoce..<sin 9 of ,_ Preco,ditioned Bieonjugate Gradient Al-

gorithm ;n F'R.I Y.,upgreomputers. Technical Report. Lawrence Livermore Na-

tional Lab. Liv-rmoro. ('.\, 19,q7.

[lri i .\. [.ichnew_ki. Sonw vector and parallel implementations for preconditioned

gradMtt atgorit hms. In .I. [(owalik. odit,-_r, Pr'oceedings of the .V.-t TO _rorkshop

on h/ph .,pe(d computing, pages :_,13-359. [984.

[17] T. A. _[anteuffel. Fh(S'hift_d [ncomplete C'hole._ky Factori:ation. Technical

Report SAY,'D78-8226. Sandia Laboratories..May 1978.

[18] .I.A. Meijerink and H. A. Van der Verst. An iterative solution method for

linear equation systems of which the coefficient matrix is a symmetric M-Matrix.

.lb_th. Comp., 3t:I[_, 162, 1977.

[19] R. G. Melhom. Solution of linear systems with striped sparso matrices. Parallel

Computing. 6: 1.65.18.1, l.qS,_.

[20] G Meurant. M_.[ltitasking the conjugate gradient method on the CRAY X-

3,lP/t,S. Parallel Cornputim.t. .;:267-2S0, 1987.

[21] .\. Osterhaug. (;_lide to Parallel P,',_jramming on %'quetd r'ompu& r .Fystem._.

Sequent Computer Systems, [nc., 1986. Sequent Technical Publications.

[22] (;. V. Ramamoorthy, K. £I. Chandry. and M. J. Gonzales Jr. Optimal schedul-

ing .-,trategies in a mu[tiprocessor system. IEEE l-tans. Comput., c-21(2):137-

1t6, Feb [972.

2t

[23]

[24]

[25]

[26]

[27]

J. K. Reid. On the method of conjugate gradients for the solution of large

sparse systems of linear equations. In .1. K. Reid, editor, /.alge Sparxe Sets of

Linear Equations, pages 231-254, Academic Press. New York, 197l.

Y. Saad. Krglov Subspace .lI_thods on Supercomputers. Technical Re-

port TR88.40, RIACS, NASA Amos Research Center. Moffett Field, ('.k 94035,

September 19S,_. To appear SIAM .I. SCI. STAT COMPI'T.

J. Saltz. R. Mirchaadaney, and D. Baxter. R,n-Time Paralleli:ation a_d

Scheduling of Loops. Technical Report [C'.kSE Report No. 88-70, ICASE. NASA

Langley Research Center, Hampton. VA 23665, December 1985.

M. K. Seager. Parallelizin9 Conjugate Gradient .lIethod fi_r the (_'RAY X-3[P.

Technical Report, Lawrence Livermore National Lab, Livermore, CA, t984.

Omar Wing and John W. Huang. A computational model of parallel solution

of linear equations. IEEE Trans, on Computers, 29(7):632-638, 1980.

25

A Test Problems

For lhis work we have chosen 7 lest cases which are representative of the class

of problems ,olved by iterative methods. All are from two-dimensional domains.

The first five are from the Harwoll-Booing collection [_] and the last two are front

electro-magnetic analysis [5]. The re._t cases are described in Table s.

Case Ref. Descriplion Order Nonzeros

l [_1 90o _:_2:_

a Is]

-, [s]

r _,.-,]

.\ nine point di,,cretization of the Laptacian on

a unit _quare with Dirichlet boundary condi-

tion>. LAP:{O

Matrix used in modeling power system net- 662 1.56s

works. PSA D.'kIIT 1

Matrix used in modding power system net- 191 1.080

works. PSADM[T2

.Matrix ,tsed in modelit-tg power system net- 6_5 t967

works. PS,\DMIT:I

Matrix used ill modeling power syslem not- llaS 2596

works. PgA D._IIT,_

\ tlt'st order triangular finile element dis- 2.500 72,',t

cretization _fftho Lap[acian operator on a unit

qquare.

Mat rix from a nonlinear magnetostatic 6517 69.670

model _f a permanent magnet motor, us-

ing an un,,,t/'uct_red finite plerw'ut mesh with

ntixed triangular and quadrilateral lhird-

order olelllOltl s.

Tablo £: Test Case Descriptions

2(;

B Sequent Overview and Performance Figures

This section provides an overview of the architecture of the Soq_l(,nt Balance 21000

and the execution times for the operations that were used in the _imings given in

this paper. The architectural description is due to Ost_rhaue, [21].

B.1 The Sequent Architecture

The Sequent Ba[ance 21000 is a shared nwmory multiprocossor. The processors
are identical 10-MHz NationM Semiconductor 32032's. Those are 32-bit processors.

They operate on a peer basis, executing a sing[e copy of the operating _ystems

executive, or "'kernel".

There is no designated "master" cpu. All processors, memory modules, and i/o

contr,fllor_ plug into a single high-speed bus. There is hardware support for m,_tual

exclusion - to support exclusive access to shared data structures, the system includes

up to 6_,K user-accessible hardware spin-locks.
The system we used has 12 processors and 28 Mbytes of memory. [n addition.

each cpu has 8 Kbytes of local RAM and _ Kbytes of cache RAM. The local RAM

holds a copy of certain frequently used kernel code and read-only kernel data _truc-
tures. The cache RAM holds blocks of system memory most recently used by the

cpu.

Operation

Addition

Multiplication
Division

4-Byte Integer

,l .4

12.7

I7.0

Operand

t-Byle Real

32._

28.[

33.0

_-Byte Real

tS.9

20.8

25.5

Table 9: Time in #seconds for Arithmetic Operations

B.2 System Timing

This section provides execution times in microseconds for a vari-ly of operation_ that

were used by the programs discussed in this paper. Times for arilhul_?tic operations

are shown in Table 9. These timings are comp_lted by looping through a program

segment 50.000 times. The time before the h,op was executed was then _qhtracred
from the tim_' at the end of the loop. Some time was subtracte,l for loop overhead

and then that time was divided by the n_lmbor _ff ib, rations Ihrough _ho loop.

27

Lockingand unlockingof locationsin the hardwareatomic lock mmnor,vwas
,]o[l_'bv the in-lino (' macrosg_LOCK()and S_URLOCK().If wea_,suntethere is no

contentiou [}or the lock. locking and unlocking a lock takes a total of :_.3 microsec-

onds. Th_ _ystem provided routines in the Paralbq Programming Library were

slow_r, taking 33 microseconds..k function, mmext(), is provided to increment a

global counter and return _he current value. fhis function takes an averagp of {9

microseconds por call.

C Memory Access Times on the Sequent

In the [(-'('G method every element of L, L T. and ._. are read once each iteration.

To explain the inefficiency of Test Case 7 we ran a simple t._,bt lhat it_,rates over

different array sizes accessing each elemeut once per itera,ion. \Vo measured the

average time to access an array element as a function of 1he size of the array.

VVe croat,__d a program with a double-precision array, big_array[], with 200.000

elements. [hen, we timed the following two loops:

for (test_size =I000; test_size<lO000;

timer (lst art_t ime) ;

for (i=O; i<200; i++) {

for (j=O; j<test_size; j++) {

local = big_array[j];

}
}

sep_t imer (lend_t ime) ;

}

test_size += 1000) {

/* first loop */

for (test_size =I0000; test_size<200001; test_size += I0000) (

timer(&start_time);

for (i=O; i<200; i++) {

for (j=O; j<test_size; j++) { /* second loop */

local = big_array[j];

}
}

sep_t imer (&end_t ime) ;

}

We copy the elements of the array one at a time to a scalar variable local. [n

the first loop, the number of array elements accessed, test_size, varies from 1.000

to 9.000 in increments of 1,000. In the second loop, the numb_r of array elements

accessed, test_size, varies from 10,000 to 100,000 in increments of 10.000. We

loop 200 times for each test size and divide the time by the total number of array

accesses. This was done 5 times for each test and the results w,:ro aw, raged.

The timing routine returns both user time (utime) and _,ystem time (stime)

separately rather than the sum of the two _,_ used the sum in all previous timings.

These quantities are defined as follows:

user time the total amount of time _pent executing in user mode

29

13.6,

13.4

13.2

13

12.8

12.6

12.4

12.2

User time per memory access as a function of array size

50 I 150 200 2 3 35O 4O0

Array size in thousands

Figure 7: l'ser Time in/.lsecs for Xlomory Access as a function of _\rray Size

system time the total amount of" time spent in tile system on behalf of tl,e process.

The results of this test are shown in Figures 7 attd 8. Tile times are measured in

microseconds. There is approximately a 2% increase in user time per access as the

array size is increased from 120K to I30K. But, there is a factor of 5 increase in

system r.ime per access as the number of array elements in the test case increases

from t20K to 130K. Recall, the total storage for full .4 in Test Case 7 is 132.,_23

double-precision numbers. The Sequent takes longer to access each element for this

large pr,)blont than for all the other test cases.

In Table tO we ,how separate entries for the user time and the system time for the

sequential. _ymmetric and full matrix hnplementations of Test Case 7. The feature

to notice i._ the drastic increase in aystem time for the forward and backward _olve

in the "'Full'" case as compared with _ho corresponding tim,,s of the "Symmetric"

and the "'Sequential" implolnetttations. This is partially explained by the te.-.t Ioops

above. We see tltat large problems such as l-,.st ('aso 7 are not efficient oa the

Soquot!.t.

:10

s
j

|

4.5
Systcm time per rr_mory acceas as a function of array size

4

3.5

3

2.5

2

0.5

0 L --

0 50 100

_ I

150 200 250 300 350

Array size in thousands

400

Figure ,_: System Time in #secs for Memory Access as a [unction of Array Size

Problem

utime

sequential stime
totals

utime

symmetric stime

(parallel) totals

utime

full stime

(parallel) totals

Table [0:

Operation
fwd bck mult total

576.05 306.50 [[57. t0 2575.25

94.53 t.67 1[9.74 234.:36

670.58 51t.[7 t277.t4 2829.61

tt7.97 65.85 182.06 397.57
88.84 t9.95 143.97 257.82

206.81 ,'_5.80 326.03 655.39

73.33 72. t7 173.2_ :349.94

127.19 1_,I._6 34.1:_ 310.25

200.52 216.63 207.46 660.[9

Detailed timing of Case 7 in seconds

3 [

r _i̧ _j_ _I_t_ _ _L_

